direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C22×C10, C25⋊3C10, C20⋊4C24, C10.21C25, C4⋊(C23×C10), (C24×C10)⋊2C2, (C23×C4)⋊7C10, (C2×C10)⋊2C24, C24⋊8(C2×C10), C22⋊(C23×C10), (C2×C20)⋊17C23, (C23×C20)⋊16C2, C2.1(C24×C10), C23⋊3(C22×C10), (C22×C10)⋊8C23, (C23×C10)⋊17C22, (C22×C20)⋊66C22, (C2×C4)⋊4(C22×C10), (C22×C4)⋊19(C2×C10), SmallGroup(320,1629)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 1874 in 1362 conjugacy classes, 850 normal (10 characteristic)
C1, C2, C2 [×14], C2 [×16], C4 [×8], C22 [×51], C22 [×112], C5, C2×C4 [×28], D4 [×64], C23 [×71], C23 [×112], C10, C10 [×14], C10 [×16], C22×C4 [×14], C2×D4 [×112], C24, C24 [×28], C24 [×16], C20 [×8], C2×C10 [×51], C2×C10 [×112], C23×C4, C22×D4 [×28], C25 [×2], C2×C20 [×28], C5×D4 [×64], C22×C10 [×71], C22×C10 [×112], D4×C23, C22×C20 [×14], D4×C10 [×112], C23×C10, C23×C10 [×28], C23×C10 [×16], C23×C20, D4×C2×C10 [×28], C24×C10 [×2], D4×C22×C10
Quotients:
C1, C2 [×31], C22 [×155], C5, D4 [×8], C23 [×155], C10 [×31], C2×D4 [×28], C24 [×31], C2×C10 [×155], C22×D4 [×14], C25, C5×D4 [×8], C22×C10 [×155], D4×C23, D4×C10 [×28], C23×C10 [×31], D4×C2×C10 [×14], C24×C10, D4×C22×C10
Generators and relations
G = < a,b,c,d,e | a2=b2=c10=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
(1 82)(2 83)(3 84)(4 85)(5 86)(6 87)(7 88)(8 89)(9 90)(10 81)(11 96)(12 97)(13 98)(14 99)(15 100)(16 91)(17 92)(18 93)(19 94)(20 95)(21 77)(22 78)(23 79)(24 80)(25 71)(26 72)(27 73)(28 74)(29 75)(30 76)(31 65)(32 66)(33 67)(34 68)(35 69)(36 70)(37 61)(38 62)(39 63)(40 64)(41 57)(42 58)(43 59)(44 60)(45 51)(46 52)(47 53)(48 54)(49 55)(50 56)(101 157)(102 158)(103 159)(104 160)(105 151)(106 152)(107 153)(108 154)(109 155)(110 156)(111 145)(112 146)(113 147)(114 148)(115 149)(116 150)(117 141)(118 142)(119 143)(120 144)(121 137)(122 138)(123 139)(124 140)(125 131)(126 132)(127 133)(128 134)(129 135)(130 136)
(1 38)(2 39)(3 40)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 150)(12 141)(13 142)(14 143)(15 144)(16 145)(17 146)(18 147)(19 148)(20 149)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 81)(62 82)(63 83)(64 84)(65 85)(66 86)(67 87)(68 88)(69 89)(70 90)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 18 27 158)(2 19 28 159)(3 20 29 160)(4 11 30 151)(5 12 21 152)(6 13 22 153)(7 14 23 154)(8 15 24 155)(9 16 25 156)(10 17 26 157)(31 150 50 131)(32 141 41 132)(33 142 42 133)(34 143 43 134)(35 144 44 135)(36 145 45 136)(37 146 46 137)(38 147 47 138)(39 148 48 139)(40 149 49 140)(51 130 70 111)(52 121 61 112)(53 122 62 113)(54 123 63 114)(55 124 64 115)(56 125 65 116)(57 126 66 117)(58 127 67 118)(59 128 68 119)(60 129 69 120)(71 110 90 91)(72 101 81 92)(73 102 82 93)(74 103 83 94)(75 104 84 95)(76 105 85 96)(77 106 86 97)(78 107 87 98)(79 108 88 99)(80 109 89 100)
(1 138)(2 139)(3 140)(4 131)(5 132)(6 133)(7 134)(8 135)(9 136)(10 137)(11 50)(12 41)(13 42)(14 43)(15 44)(16 45)(17 46)(18 47)(19 48)(20 49)(21 141)(22 142)(23 143)(24 144)(25 145)(26 146)(27 147)(28 148)(29 149)(30 150)(31 151)(32 152)(33 153)(34 154)(35 155)(36 156)(37 157)(38 158)(39 159)(40 160)(51 91)(52 92)(53 93)(54 94)(55 95)(56 96)(57 97)(58 98)(59 99)(60 100)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(85 125)(86 126)(87 127)(88 128)(89 129)(90 130)
G:=sub<Sym(160)| (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,81)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,77)(22,78)(23,79)(24,80)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,61)(38,62)(39,63)(40,64)(41,57)(42,58)(43,59)(44,60)(45,51)(46,52)(47,53)(48,54)(49,55)(50,56)(101,157)(102,158)(103,159)(104,160)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,141)(118,142)(119,143)(120,144)(121,137)(122,138)(123,139)(124,140)(125,131)(126,132)(127,133)(128,134)(129,135)(130,136), (1,38)(2,39)(3,40)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,18,27,158)(2,19,28,159)(3,20,29,160)(4,11,30,151)(5,12,21,152)(6,13,22,153)(7,14,23,154)(8,15,24,155)(9,16,25,156)(10,17,26,157)(31,150,50,131)(32,141,41,132)(33,142,42,133)(34,143,43,134)(35,144,44,135)(36,145,45,136)(37,146,46,137)(38,147,47,138)(39,148,48,139)(40,149,49,140)(51,130,70,111)(52,121,61,112)(53,122,62,113)(54,123,63,114)(55,124,64,115)(56,125,65,116)(57,126,66,117)(58,127,67,118)(59,128,68,119)(60,129,69,120)(71,110,90,91)(72,101,81,92)(73,102,82,93)(74,103,83,94)(75,104,84,95)(76,105,85,96)(77,106,86,97)(78,107,87,98)(79,108,88,99)(80,109,89,100), (1,138)(2,139)(3,140)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,50)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,141)(22,142)(23,143)(24,144)(25,145)(26,146)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(36,156)(37,157)(38,158)(39,159)(40,160)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130)>;
G:=Group( (1,82)(2,83)(3,84)(4,85)(5,86)(6,87)(7,88)(8,89)(9,90)(10,81)(11,96)(12,97)(13,98)(14,99)(15,100)(16,91)(17,92)(18,93)(19,94)(20,95)(21,77)(22,78)(23,79)(24,80)(25,71)(26,72)(27,73)(28,74)(29,75)(30,76)(31,65)(32,66)(33,67)(34,68)(35,69)(36,70)(37,61)(38,62)(39,63)(40,64)(41,57)(42,58)(43,59)(44,60)(45,51)(46,52)(47,53)(48,54)(49,55)(50,56)(101,157)(102,158)(103,159)(104,160)(105,151)(106,152)(107,153)(108,154)(109,155)(110,156)(111,145)(112,146)(113,147)(114,148)(115,149)(116,150)(117,141)(118,142)(119,143)(120,144)(121,137)(122,138)(123,139)(124,140)(125,131)(126,132)(127,133)(128,134)(129,135)(130,136), (1,38)(2,39)(3,40)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,150)(12,141)(13,142)(14,143)(15,144)(16,145)(17,146)(18,147)(19,148)(20,149)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,81)(62,82)(63,83)(64,84)(65,85)(66,86)(67,87)(68,88)(69,89)(70,90)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,18,27,158)(2,19,28,159)(3,20,29,160)(4,11,30,151)(5,12,21,152)(6,13,22,153)(7,14,23,154)(8,15,24,155)(9,16,25,156)(10,17,26,157)(31,150,50,131)(32,141,41,132)(33,142,42,133)(34,143,43,134)(35,144,44,135)(36,145,45,136)(37,146,46,137)(38,147,47,138)(39,148,48,139)(40,149,49,140)(51,130,70,111)(52,121,61,112)(53,122,62,113)(54,123,63,114)(55,124,64,115)(56,125,65,116)(57,126,66,117)(58,127,67,118)(59,128,68,119)(60,129,69,120)(71,110,90,91)(72,101,81,92)(73,102,82,93)(74,103,83,94)(75,104,84,95)(76,105,85,96)(77,106,86,97)(78,107,87,98)(79,108,88,99)(80,109,89,100), (1,138)(2,139)(3,140)(4,131)(5,132)(6,133)(7,134)(8,135)(9,136)(10,137)(11,50)(12,41)(13,42)(14,43)(15,44)(16,45)(17,46)(18,47)(19,48)(20,49)(21,141)(22,142)(23,143)(24,144)(25,145)(26,146)(27,147)(28,148)(29,149)(30,150)(31,151)(32,152)(33,153)(34,154)(35,155)(36,156)(37,157)(38,158)(39,159)(40,160)(51,91)(52,92)(53,93)(54,94)(55,95)(56,96)(57,97)(58,98)(59,99)(60,100)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(85,125)(86,126)(87,127)(88,128)(89,129)(90,130) );
G=PermutationGroup([(1,82),(2,83),(3,84),(4,85),(5,86),(6,87),(7,88),(8,89),(9,90),(10,81),(11,96),(12,97),(13,98),(14,99),(15,100),(16,91),(17,92),(18,93),(19,94),(20,95),(21,77),(22,78),(23,79),(24,80),(25,71),(26,72),(27,73),(28,74),(29,75),(30,76),(31,65),(32,66),(33,67),(34,68),(35,69),(36,70),(37,61),(38,62),(39,63),(40,64),(41,57),(42,58),(43,59),(44,60),(45,51),(46,52),(47,53),(48,54),(49,55),(50,56),(101,157),(102,158),(103,159),(104,160),(105,151),(106,152),(107,153),(108,154),(109,155),(110,156),(111,145),(112,146),(113,147),(114,148),(115,149),(116,150),(117,141),(118,142),(119,143),(120,144),(121,137),(122,138),(123,139),(124,140),(125,131),(126,132),(127,133),(128,134),(129,135),(130,136)], [(1,38),(2,39),(3,40),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,150),(12,141),(13,142),(14,143),(15,144),(16,145),(17,146),(18,147),(19,148),(20,149),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,81),(62,82),(63,83),(64,84),(65,85),(66,86),(67,87),(68,88),(69,89),(70,90),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,18,27,158),(2,19,28,159),(3,20,29,160),(4,11,30,151),(5,12,21,152),(6,13,22,153),(7,14,23,154),(8,15,24,155),(9,16,25,156),(10,17,26,157),(31,150,50,131),(32,141,41,132),(33,142,42,133),(34,143,43,134),(35,144,44,135),(36,145,45,136),(37,146,46,137),(38,147,47,138),(39,148,48,139),(40,149,49,140),(51,130,70,111),(52,121,61,112),(53,122,62,113),(54,123,63,114),(55,124,64,115),(56,125,65,116),(57,126,66,117),(58,127,67,118),(59,128,68,119),(60,129,69,120),(71,110,90,91),(72,101,81,92),(73,102,82,93),(74,103,83,94),(75,104,84,95),(76,105,85,96),(77,106,86,97),(78,107,87,98),(79,108,88,99),(80,109,89,100)], [(1,138),(2,139),(3,140),(4,131),(5,132),(6,133),(7,134),(8,135),(9,136),(10,137),(11,50),(12,41),(13,42),(14,43),(15,44),(16,45),(17,46),(18,47),(19,48),(20,49),(21,141),(22,142),(23,143),(24,144),(25,145),(26,146),(27,147),(28,148),(29,149),(30,150),(31,151),(32,152),(33,153),(34,154),(35,155),(36,156),(37,157),(38,158),(39,159),(40,160),(51,91),(52,92),(53,93),(54,94),(55,95),(56,96),(57,97),(58,98),(59,99),(60,100),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(85,125),(86,126),(87,127),(88,128),(89,129),(90,130)])
Matrix representation ►G ⊆ GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 31 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 2 |
0 | 0 | 0 | 40 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 39 |
0 | 0 | 0 | 0 | 40 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,31,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,40,0,0,0,2,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,39,40] >;
200 conjugacy classes
class | 1 | 2A | ··· | 2O | 2P | ··· | 2AE | 4A | ··· | 4H | 5A | 5B | 5C | 5D | 10A | ··· | 10BH | 10BI | ··· | 10DT | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
200 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | C5×D4 |
kernel | D4×C22×C10 | C23×C20 | D4×C2×C10 | C24×C10 | D4×C23 | C23×C4 | C22×D4 | C25 | C22×C10 | C23 |
# reps | 1 | 1 | 28 | 2 | 4 | 4 | 112 | 8 | 8 | 32 |
In GAP, Magma, Sage, TeX
D_4\times C_2^2\times C_{10}
% in TeX
G:=Group("D4xC2^2xC10");
// GroupNames label
G:=SmallGroup(320,1629);
// by ID
G=gap.SmallGroup(320,1629);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-5,-2,2269]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^10=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations